An A-Train Integrated Aerosol, Cloud, and Radiation Data Product

P.I.: B. A. Wielicki, NASA LaRC

Co-ls: David Winker, Thomas Charlock, Paul Stackhouse, Patrick Minnis, Kuan-man Xu, NASA LaRC, Graeme Stephens, Colorado State University, William Collins, NCAR, Norman Loeb, Hampton University

Project hypothesis: Provide an A-Train Integrated Aerosol, Cloud, and Radiation Data Product

Objectives & deliverables:

- Provide the most highly integrated data set for cloud/aerosol/radiation including CERES fluxes and 4-D radiative assimilation, MODIS cloud and aerosol, CALIPSO cloud and aerosol profiles, Cloudsat cloud profiles, MATCH aerosol assimilation, GEOS 4.0.3 dynamical assimilation.
- Subset the data along the CALIPSO/CloudSat groundtrack to dramatically reduce data volume and still allow global data.
- Provide both L2 and L3 (gridded) merged data products
- Evolve with increasing complexity and completeness with time. Walk then run.
- Help to greatly advance the science community ability to attack aerosol/cloud/radiation research that drives the energy cycle directly, and indirectly the hydrology cycle.

Technical approach and/or methods (can be supported or explained with 2-3 additional figure pages):

- Build on CERES data fusion experience and start
- Take advantage of existing links on CERES/CALIPSO/CloudSat/GEOS-4/MATCH/Cloud Objects/CRMs/MMFs
- Dramatically reduce CERES/MODIS/CALIPSO/CloudSat data volumes by focusing on cloud, aerosol, radiative flux profiles along lidar/radar ground track and 64-km swath centered on it.
- Provide subset data sets to science community
- Produce more accurate vertical flux profiles along A-train ground track (active/passive/model)
 especially for multi-layer clouds and polar clouds
- Provide L2, L3 grid, and L3 cloud object versions of the integrated cloud/aerosol/flux profiles.

CERES: Integrated Data for Radiation/Cloud/Aerosol

- 2 to 10 times ERBE accuracy: moving from 5 W/m^2 toward 1 W/m^2 - TOA, surface and atmosphere fluxes

- A radiative 4-D assimilation: integration of surface/ cloud/aerosol/atmosphere constrained to TOA flux

Input Data

CERES Crosstrack Broadband

CERES Hemispheric Scan ADMs

MODIS Cloud/Aerosol/Snow&lce

Microwave Sea-Ice

MATCH Aerosol Assimilation

GEOS 4-D Assimilation Weather (fixed climate assimilation system)

Geostationary 3-hourly Cloud

Consistent Intercalibration

Output Data

ERBE-Like TOA Fluxes (20km fov, 2.5 deg grid)

CERES Instantaneous TOA/Sfc/Atmosphere Flux

- 20km field of view (SSF, CRS products)
- I degree grid (SFC, FSW products)
- Fluxes, cloud & aerosol properties

CERES Time Averaged TOA/Sfc/Atmosphere

- 3-hourly, daily, monthly
- I degree grid (SRBAVG, AVG, ZAVG products)
- Fluxes, cloud and aerosol properties

New Terra CERES CRS Data Product Instantaneous Match Surface Flux Accuracy

Tested against 40 BSRN, ARM SURFRAD, COVE surface sites

Surface Flux	Bias (24 hr Average)*	Aerosol Forcing (24 hr)	Sigma (24 hr Average)*	Samples
SW Down All-sky	3	-	27	3900
LW Down All-sky	- 5	-	22	7700
SW Down Clear-sky	0	- 8	8	1600
LW Down Clear-sky	- 9	2	15	800

- Surface Data Averaged over 30 minutes
- Uses closest CERES 20-km field of view
- MODIS clear-sky aerosols
- NCAR MATCH aerosol assimilation of MODIS for cloudy sky aerosol
- GSFC GEOS-4 assimilation atmosphere
- New gamma distribution Fu-Liou model
- No surface data used in satellite retrieval

^{*} SW fluxes are scaled to 24-hour average insolation (1/3 typical Terra 10:30 am values) LW fluxes include both daytime and night-time validation results

Large Deep Convective Cloud Systems: Ht > 10km, tau > 10, Fraction = 1, Diameter > 100km March, 1998, 25N to 25S

CERES Observations

Cloud Resolving Model (2km 2-D)

ECMWF initial conditions, advective tendencies
Cloud Object Data available at: http://cloud-object.larc.nasa.gov/

6.0 (c) ECMWF 5.0 4.0 3.0 2.0 1.0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Albedo

ECMWF (50 km 3-D)

Xu et al., 2005

NEWS team kick-o

Data set needs (particularly large data sets – include potential sizes):

•	CERES Merged aerosol/cloud/fluxes	(5 levels):	5GB/day, 5TB/3yrs
---	-----------------------------------	-------------	-------------------

 MODIS L1 radiances: CERES subsample at 2km, 19 channels, 250 	.B/day	, 25TB/3yrs
--	--------	-------------

•	MODIS Aerosol Data Product,	3GB/day, 3TB/3yrs
---	-----------------------------	-------------------

•	CALIPSO lidar aerosol/cloud vertical	profiles (y-z),	3GB/day, 3TB/3yrs

MATCH (NCAR) aerosol assimilation using MODIS and CALIPSO aerosols

MODIS L1 full resolution 64km subset
 6GB/day, 6TB/3yrs

Total Input Data Volume (most at LaRC DAAC)
 50GB/day, 50TB/3yrs

Project outputs (project results that may be made available to the NEWS team for subsequent use – include potential size/resource requirements):

Subsets at 1km and 64km swaths along A-train lidar/radar groundtrack

Data Products are subset along lidar/radar ground track to (1/64km) swaths.

- CERES CRS L2 flux profiles subset along lidar/radar groundtrack, 50 MB/day, 50GB/3yrs
- MODIS L1 radiance subset used by CERES,
 650/10 MB/day, 650/10 GB/3yrs
- MODIS MOD 04 L2 Aerosol subsets,
 100 MB/day, 100GB/3yrs
- GEOS 4.0.3 atmosphere state profiles interpolated to CERES fovs, 15MB/day, 15GB/3yrs
- MATCH aerosol assimilation of MODIS/CALIPSO interpolated to CERES fovs
 New integrated A-train vertical profiles of aerosols/cloud/radiation
- L2 Cloud/Aerosol/Flux profiles(120levels) (200MB/day at 20km res, 800MB/day at 5km) (integrates CERES/MODIS/CALIPSO/CloudSat/GEOS/MATCH along A-train)
- L3 monthly (1 deg lat / 30 deg lon) gridded data (90MBmonth)
- L3 annual mean (1 deg lat 30 deg lon: 90MB/year), (1 deg lat 5 deg lon: 540MB/year)
- L3 Cloud object sets of aerosol/cloud/radiative flux profiles: similar to gridded volume
- Total Output Product Data Volume (all on hard disk data pool) 2GB/day, 2TB/3yrs

Potential collaborations (with NSIT, other NEWS projects, etc.):

- NSIT activities for global energy/water budget perspective
- Cloud/aerosol/energy studies (L'Ecuyer, Leung, Soden, Roads, Betts, Curry)
- A-train water integrated product (Fetzer)
- Land/energy studies (Denning, Peters-Lidard)

Important outside linkages/resources (outside the NEWS team):

- CERES (Wielicki, P.I.)
- CALIPSO (Winker, Co-I)
- CloudSat (Stephens, Co-I)
- MATCH NCAR Aerosol Assimilation (Collins, Co-I)
- Cloud Modeling, GCSS, MMF (Xu, Co-I)
- GEOS 4.0.3/ GEOS 5 (Wu through CERES-GEOS link)
- GEWEX Radiative Flux Assessment (Wielicki, Stackhouse)
- Aerosol Direct and Indirect Research (Loeb, Co-I)

Expected contribution to the NEWS objective:

- Improved 4-D radiative assimilation by adding CALIPSO/CloudSat vertical profiles to CERES radiative flux profiles: surface, in atmosphere, to TOA
- Provide cloud type subsets of A-train data matched to GEOS-4 atmospheric state data. Allows improved cause/effect tests of cloud modeling.
- These data products make it much easier for the broader science community to take advantage of the A-train cloud/aerosol/radiation data
- Data products to assess accuracy of MODIS cloud products, CERES surface/atm fluxes especially for polar clouds.
- Data products to assess the effect of cloud contamination on aerosol Direct Radiative Effect
- Data products to improve estimates of aerosol Indirect Effects

Issues, needs, and concerns (to be discussed in breakouts, teaming discussions, etc.):

- GEOS-4 vs GEOS-5 vs ECMWF
- How near real-time is needed? 1 week? 1 month? 6 months?
- Subsetting of full res MODIS L1 and L2 radiance/cloud/aerosol for 64km swath at GSFC
- Support to GEWEX Radiative Flux/Cloud/Aerosol/Precip Assessments: started post NRA
- Need new approaches to determine climate model prediction uncertainty and climate observation requirements/priorities (by variable/time scale/space scale/accuracy)

Backup Figures

60,000 Earth-Like Planets

Amount of change for a factor of 6 in climate model sensitivity, by climate variable: clouds dominate

We critically need more rigorous ways to quantify climate observation requirements as a function of variable/time/space scale. Perturbed Physics Ensemble approach is the first opportunity to attack this fundamental problem.

Neural Net Structure

Input Variables Output Variables Planet "I" - Planet "J" Planet "I" - Planet "J" base state CO₂ climate 2xCO₂ minus 1xCO₂ **TOA SW Flux** Neural **TOA LW Flux** · **Total Cloud Fraction Network** Surface Temperature **Convective Cld** Fraction Summer U.S. Precip **Precipitation Sfc Latent Heat Flux** -Sea Level **Column Water Vapor Surface Wind Sea Level Pressure Surface Net SW flux Surface Net LW flux**

Neural Net Prediction of Climate Sensitivity

Planet "I" minus Planet "J"
Doubled CO₂ Global Temp Chang

Neural Net Prediction: Doubled CO₂ Global Temp Change (uses Planet I and J normal CO₂ climate only)

Boundary Layer Cloud Systems: Observed CERES TOA Albedo Pdfs for March, 2000 La Nina vs March, 1998 El Nino

Suggests stable properties by cloud type: next step to quantify how stable.... 1 Wm⁻²? 0.1 Wm⁻²?

No apparent difference in the S.E. Pacific, even though the Walker Cell strength reduced, Hadley cell strengthened...

Global Radiation and Ocean Heat Storage: What does it mean?

- Climate atmos. noise only 0.3 Wm⁻²
- Ocean/Rad diff = 0.4 Wm⁻² 1σ
 = ocean spatial sampling noise
- ERBS cavity radiometer gain change = 0.1% or 0.2 Wm⁻²
- 1.5 Wm⁻² variations larger than expected
- IPCC forcing = 0.6 Wm⁻²/decade
- All other heat storage mechanisms are smaller by factor of 10 or more
- Aerosol/greenhouse forcing changes small except Pinatubo in 91-93
- Large changes = variations in net cloud radiative forcing
- Not clear if ocean => cloud or cloud => ocean
- Non-equilibrium link of ocean/cloud must be unscrambled in model/data

Overcast Boundary Layer Cloud Systems: Observed CERES Cloud Objects for March,1998

Sample individual pdfs for just 8 of the stratus cloud systems (CERES SSF TOA albedo)

Weather: can we predict why they vary? SST? wind shear? boundary layer height?

Climate: can we predict the ensemble mean vs change in SST, wind shear, etc? Feedbacks in partial derivatives

Xu et al., in preparation